

Maryland ACEP Chapter Educational Conference & Annual Meeting March 12, 2020

FACULTY: Mimi Le Lu, MD, FACEP

PRESENTATION

Pediatric DKA: Not Just Little People with Hyperglycemia

DESCRIPTION

The management of diabetic ketoacids (DKA) is one condition that is often managed differently between pediatric and adult patients. The speaker will emphasis pearls and potential pitfalls to avoid peril in the pediatric patient in DKA.

The speaker will discuss differences in management strategies between adult and pediatric patients with DKA and how these differences may affect. She will present the most recent literature and guidelines that address common myths and pitfalls for DKA.

OBJECTIVES

- The similarities and differences between pediatric and adult patients with DKA.
- Identify potential management errors that can lead to awareness in pediatric patients.

DISCLOSURE

No significant financial relationships to disclose.

Pediatric DKA: Not just little adults with hyperglycemia ... or ARE they???

Mimi Lu, MD Clinical Assistant Professor Department of Emergency Medicine Director, Pediatric EM Education University of Maryland

No disclosures

Outline

Compare/ contrast adult and pediatric patients
Pitfalls in management for the pediatric patient
Management strategies for insulin pumps

45 yo diabetic 3 with abdominal pain > nausea, no vomiting, no diarrhea, no fevers

PMHx: Diabetes Meds: Novolog, Lantus

PEx: T 37.5, P 118, RR 24, BP 139/81, 100% RA pale, +tender LUQ and LLQ

45 yo diabetic 3 with abdominal pain

AG = 28

Lipase: 335 (23-300)

UA: 3+ ketones

VBG 7.098 28/ -21

Case #1

45 yo diabetic 3 with abdominal pain > hyperglycemia, ketosis, acidosis

Dx: DKA

Rx: IVF IVF IVF INF Insulin (bolus?)

Kitabchi, ADA Consensus Statement, *Diabetes Care*, 2009 Goyal, *JEM*, 2010

Case #1

yo diabetic 3 with abdominal pain nausea, no vomiting, no diarrhea, no fevers

PMHx: Diabetes Meds: Novolog, Lantus

PEx: T 37.5, P 128, RR 35, BP 109/71, 100% RA pale, +tender LUQ and LLQ

Case #1

Dx: DKA

yo diabetic 3 with abdominal pain > hyperglycemia, ketosis, acidosis

Edge, *Diabetologia*, 2006 Wolfsdorf, *Pediatr Diabetes*, 2009

Diabetic Ketoacidosis (DKA)

• Complex metabolic triad:

- 1. Hyperglycemia
 - Glucose > 200 mg/dL (11 mmol/L)
- 2. Ketonemia and/or ketonuria
- 3. Acidosis
 - Venous pH <7.3
 - Bicarbonate <15 mmol/L

Categories

Adults

- Mild:
 - pH 7.25-7.3
 - Bicarbonate 15-18 mmol/L
- Moderate
 - pH 7.0-7.25
 - Bicarbonate 10-15 mmol/L
- Severe
 - pH < 7.0
 - Bicarbonate < 10 mmol/L

Kitabchi, Diabetes Care, 2009

Children

- Mild:
 - pH 7.2-7.3
 - Bicarbonate 10-15 mmol/L
- Moderate
 - pH 7.1-7.2
 - Bicarbonate 5-10 mmol/L
- Severe
 - pH < 7.1
 - Bicarbonate < 5 mmol/L

Wolfsdorf, Pediatric Diabetes, 2014

Hyperosmolar Hyperglycemia State

- Plasma glucose > 600 mg/dL
- Little to no ketoacid accumulation
- Serum osmolality > 320 mOsm/kg
 - 2[measured Na (mEq/L)] + glucose (mg/dL)/18 + BUN/2.8
- Rare in children

Little adults?

 Delay in diagnosis Harder to elicit history polydipsia, polyuria, weight loss "Respiratory problem" Precision in fluid regulation Higher basal metabolic rate Larger surface area Immature auto-regulatory systems

Initial evaluation

- ABC's and vital signs (including FS and weight in kg)
- Mental status
- Precipitating cause(s)
 - Infection
 - Non-compliance
 - New-onset
 - Stressors: pregnancy, MI, stroke

Laboratory evaluation

- Capillary glucose
- Serum glucose
- Serum electrolytes
- Complete blood count
- Serum osmolality
- Serum ketone/ beta-hydroxybutyrate
- Urinalysis
- Electrocardiogram
- "Digi-tube"

Bou Chebl R, *BMC Emerg Med*, 2016 Gilhotra Y, *J Paediatr Child Health*, 2007

Similarities: DKA

Adults

Fluid resuscitation
Correct electrolytes
Insulin therapy
Find the source
No bicarbonate!

Pediatrics

Fluid resuscitation
Correct electrolytes
Insulin therapy
Find the source
No bicarbonate!

Differences: DKA

Adults

Liberal use of IVF

Insulin bolus vs infusion
0.1 vs 0.14 units/kg/hr

Differences

(More) conservative IVF
20 ml/kg over 1 hr
No insulin bolus
0.05-0.1 units/kg/hr
Two bag system
Cerebral edema

Cerebral edema

Leading cause of morbidity and mortality in DKA

- 0.3 1.5% all cases
- 20% mortality
- 20% neurologic impairment
- Unclear mechanism
- Low threshold for treatment
- Almost exclusively in peds

Cerebral edema

Measurement of corneal thickness, optic nerve sheath diameter and retinal nerve fiber layer as potential new non-invasive methods in assessing a risk of cerebral edema in type 1 diabetes in children

Krzysztof Jeziorny¹ · Anna Niwald² · Agnieszka Moll² · Katarzyna Piasecka² · Aleksandra Pyziak-Skupien¹ · $\label{eq:alpha} Arleta\,Waszczykowska^3\cdot Dobromiła\,Baranska^4\cdot Beata\,Malachowska^5\cdot Agnieszka\,Szadkowska^1\cdot$ Wojciech Mlynarski¹ · Agnieszka Zmyslowska¹

Kendir OT, J Pediatr Endocrinol Metab, 2019

Cerebral edema risk factors

- Young children
- New onset and newly diagnosed
- Increased BUN
- Severity of acidosis
- Bicarbonate therapy use
- Failure of sodium to rise after therapy

Cerebral edema

"There is no convincing evidence of an association between the rate of fluid or sodium administration used in the treatment of DKA and the development of cerebral edema"

Wolfsdorf J, Pediatric Diabetes, 2009

Pediatric DKA Management

Mild

Talk to endocrinologist
Subcutaneous insulin
Oral hydration

Moderate/ Severe

Fluids
Electrolytes
Insulin
Source

Treatment: fluids

- Dehydration on order of 5-10% ("moderate")
- Correct intravascular volume deficits
- Lowers glucose and plasma osmolality
- Restore renal perfusion
- Better response to insulin therapy

Treatment: fluids

Initial fluid choice:
20 ml/kg over 1-2 hour
Max: 40-50 mL/kg over 4 hours

Peds DKA rarely presents in hypovolemic shock.... find another source!

Treatment: fluids Replace deficit over next 48 hours Approximately 2x maintenance

- 4 ml/kg/hr for first 10 kg
 2 ml/kg/hr for next 10 kg
- 1 ml/kg/hr for remaining kg

Example:
35 kg patient = 75 ml/hr

Approx 150 ml/hr

Clinical Trial of Fluid Infusion Rates for Pediatric Diabetic Ketoacidosis

Nathan Kuppermann, M.D., M.P.H., Simona Ghetti, Ph.D., Jeff E. Schunk, M.D., Michael J. Stoner, M.D., Arleta Rewers, M.D., Ph.D., Julie K. McManemy, M.D., M.P.H., Sage R. Myers, M.D., M.S.C.E., Lise E. Nigrovic, M.D., M.P.H., Aris Garro, M.D., M.P.H., Kathleen M. Brown, M.D., Kimberly S. Quayle, M.D., Jennifer L. Trainor, M.D., <u>et al.</u>, for the PECARN DKA FLUID Study Group*

Randomized controlled trial
0.9% vs 0.45% NaCl, rapid vs slow
GCS <14: 48/1389 (3.5%)
Clinically apparent brain injury: 12/1389 (0.9%)

Conclusion:

 Neither the rate of administration nor the sodium chloride content of intravenous fluids significantly influenced neurologic outcomes in children with diabetic ketoacidosis.

Now what???

ISPAD CLINICAL PRACTICE CONSENSUS GUIDELINES

ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state

Joseph I. Wolfsdorf¹ | Nicole Glaser² | Michael Agus^{1,3} | Maria Fritsch⁴ [©] | Ragnar Hanas⁵ | Arleta Rewers⁶ | Mark A. Sperling⁷ | Ethel Codner⁸ [©]

REVIEWS AND COMMENTARIES

Fluid treatment for children with diabetic ketoacidosis: How do the results of the pediatric emergency care applied research network Fluid Therapies Under Investigation in Diabetic Ketoacidosis (FLUID) Trial change our perspective?

Nicole Glaser¹ | Nathan Kuppermann^{1,2}

Peddatic Diabbees 20098

Type of fluid?

- Retrospective studyNS vs LR
- Outcomes: cost, LOS, rates of CE

Conclusion:

 Resuscitation with LR compared with NS was associated with lower total cost and rates of CE.

Bergmann KR, Pediatr Emerg Care, 2018

Electrolytes

Treatment: electrolytes

Potassium

Apparent serum hyperkalemia
Total body potassium depletion
Treatment DKA will cause drop

Treatment: electrolytes

Potassium

Low: replete before starting insulin
Normal: add with fluids and insulin
High: confirm urine output, then add

Start insulin therapy *after* obtaining potassium levels

Treatment: electrolytes

Phosphate

Total body phosphate depletion

- No data showing significant benefit of repletion
- Concern for hypocalcemia
- Consider when increasing CF or symptomatic

Bicarbonate

Treatment: bicarbonate

NOT recommended

- Paradoxical intracellular acidosis
- Worsening tissue perfusion
- Worsening hypokalemia
- Worsening hyperosmolality
- Cerebral edema

• Exceptions:

Severe acidosis: pH <6.9 and
Cardiac arrhythmia

Insulin

Treatment: insulin

- Continuous infusion (0.05-0.1 units/kg/hr)
- Prime IV tubing
- Start 1-2 hours after initial fluid bolus
- No bolus in peds
- Continue until resolution of acidosis
- Maintain glucose> 250-300 mg/dL

Treatment

BAG A NS + KCl +KPhos

BAG B D₁₀NS + KCL + KPhos Insulin 0.05-0.1 units/kg/hr

Total rate (mL/hr)

3-1-2-1-1

Cerebral edema management

- Hourly neuro checks
- Immediate treatment
- Reduce fluid administration
- Mannitol
 - 0.5-1 g/kg within 5-10 min
- Hypertonic saline
 - 5-10 ml/kg
- Avoid mechanical hyperventilation

Treat *before* imaging Hypertonic solution at bedside

Insulin pumps

Insulin pumps

Insulin pumps

- Self-contained subcutaneous delivery system
 - Only contains <u>short-acting</u> insulin
 - Shorter window before risk DKA
 - Check the tubing for kinks/ breaks
 - Change site (every 3 days)
 - Callous formation
 - Local infection
 - User error/ manipulation

Trouble shooting

- Insulin infusion
 - Severe insulin resistance due to infection
 Incorrect preparation of insulin infusion
 Insulin adherent to tubing Prime the tube!

Management pearls Example management: • FS >300 Check ketones Give pump bolus and recheck in 1 hour If decreased by 50, give subcutaneous correction dose Change site, recheck in 1 hour

Hopefully in the not too distant future...

- 1. Continuous Glucose Monitor
- 2. Computer-Controlled Algorithm
- 3. Insulin Pump
- 4. Patient Effect

DKA Pearls and Pitfalls

- (More) Conservative IV fluids in peds
- Start insulin only after obtaining potassium levels
- No bicarbonate
- No insulin bolus in peds
- Treat before imaging for cerebral edema

Questions?

mlu@som.umaryland.edu